Kinetics and Mechanism of RNA Binding by Triplex Tethered Oligonucleotide Probes
نویسندگان
چکیده
We have described a series of tethered oligonucleotide probes (triplex TOPs) that recognize one singlestranded and one double-stranded region of an RNA simultaneously through the formation of Watson-Crick and Hoogsteen base pairs, respectively. Here we describe studies on the kinetics and mechanism of triplex TOP‚RREAU association and dissociation. Because triplex TOP‚RREAU complexes cannot be observed by direct electrophoretic methods, kinetics was monitored by use of a competitive electrophoretic mobility shift assay that quantified the effect of a triplex TOP on the association and dissociation rates of an electrophoretically stable TOP‚RREAU complex. Association and dissociation rate constants of triplex TOP‚RREAU complexes were extracted from the experimental data by numerical integration. Triplex TOP‚RREAU association reactions at 25 °C were characterized by rate constants between (7.8 ( 2.0) × 103 and (16 ( 3) × 103 M-1 s-1, while dissociation reactions were characterized by rate constants between (3.3 ( 1.0) × 10-4 and (5.4 ( 2.0) × 10-2 s-1. Rate constants for association of triplex TOP‚RREAU complexes were insensitive to the length and sequence of the 3′-oligonucleotide that mediates triple helix formation. Rate constants for dissociation of triplex TOP‚RREAU complexes were sensitive to changes in tether length as well as the length and composition of the 3′-oligonucleotide. Taken together, these data suggest that triplex TOPs follow a kinetic pathway for binding RREAU in which duplex formation is rate-limiting and precedes triple helix formation. The implication of our data with regard to the kinetics of triple helix association within the context of a highly structured RNA is discussed. Large, structured RNA molecules play critical roles in cellular and viral life cycles.1-3 A considerable body of biochemical structure-mapping data,4-6 along with several high-resolution structures,7-15 indicate that many large RNAs are composed of irregular arrangements of short singleand double-stranded regions joined by structures such as loops, bulges, and pseudoknots.16-19 These irregular architectures present complex functional group arrays that are recognized in nature by proteins,20-23 other nucleic acids,2,24 and small organic molecules.25 There is considerable current interest in the design of molecules that mimic the properties of these natural ligands, not only to inhibit the translation of messenger RNAs but also to interrupt the functions of catalytic and regulatory RNAs.26-32 Several strategies have been presented for the recognition of large, structured RNA molecules. Ribozymes and singlestranded oligonucleotides33-35 recognize RNA on the basis of primary sequence.36-40 Although a strategy based on primary sequence recognition is broadly applicable in theory, it requires a target sequence that is unique, accessible, and singlestranded.41-47 These requirements can be difficult to fulfill in practice. * Corresponding author. Phone: 203-432-5094. Fax: 203-432-6144. E-mail: [email protected]. X Abstract published in AdVance ACS Abstracts, October 15, 1997. (1) Standart, N.; Jackson, R. J. Biochimie 1994, 76, 867. (2) The RNA World; Cold Spring Harbor Press: Cold Spring Harbor, NY, 1993. (3) Pain, V. M. Eur. J. Biochem. 1996, 236, 747. (4) Peattie, D. A.; Gilbert, W. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 4679. (5) Ehresmann, C.; Baudin, F.; Mougel, M.; Romby, P.; Ebel, J. P.; Ehresmann, B. Nucleic Acids Res. 1987, 15, 9109. (6) Huber, P. W. FASEB J. 1993, 7, 1367. (7) Jack, A.; Ladner, J. E.; Klug, A. J. Mol. Biol. 1976, 108, 619. (8) Schevitz, R. W.; Podjarny, A. D.; Krishnamachari, N.; Hughes, J. J.; Sigler, P. B. Nature 1979, 278, 188. (9) Basavappa, R.; Sigler, P. B. EMBO J. 1991, 10, 3105. (10) Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. Science 1996, 273, 1678. (11) Scott, W. G.; Murray, J. B.; Arnold, J. R. P.; Stoddard, B.; Klug, A. Science 1996, 274, 2065. (12) Cate, J. H.; Doudna, J. A. Structure 1996, 4, 1221. (13) Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Szewczak, A. A.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. Science 1996, 273, 1696. (14) Pley, H. W.; Flaherty, K. M.; McKay, D. B. Nature 1994, 372, 111. (15) Pley, H.; Flaherty, K.; McKay, D. Nature 1994, 372, 111. (16) Tinoco, I. J.; Davis, P. W.; Hardin, C. C.; Puglisi, J. D.; Walker, G. T.; Wyatt, J. Cold Spring Harbor Symp. Quant. Biol. 1987, 52, 135. (17) Tinoco, I. J.; Puglisi, J. D.; Wyatt, J. R. Nucleic Acids Mol. Biol. 1990, 4, 205. (18) Chastain, M.; Tinoco, I. J. Prog. Nucleic Acid Res. Mol. Biol. 1991, 41, 131. (19) Dam, E. T.; Pleij, K.; Draper, D. Biochemistry 1992, 31, 11665. (20) Frankel, A. D.; Mattaj, I. W.; Rio, D. C. Cell 1991, 67, 1041. (21) Mattaj, I. W. Cell 1993, 73, 837. (22) Burd, C. G.; Dreyfuss, G. Science 1994, 265, 615. (23) Draper, D. E. Annu. ReV. Biochem. 1995, 64, 593. (24) Ribosomal RNA and Group I Introns; R. G. Landes: Austin, TX, 1996; Vol. 1. (25) Bass, B. L.; Cech, T. R. Nature 1984, 308, 820. (26) Stephenson, M. L.; Zamecnik, P. C. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 285. (27) Ahsen, U. v.; Davies, J.; Schroeder, R. Nature 1991, 353, 368. (28) Renneisen, K.; Leserman, L.; Mattes, E.; Schroder, H. C.; Muller, W. E. G. J. Biol. Chem. 1990, 265, 16337. (29) Li, G.; Lisziewicz, J.; Sun, D.; Zon, G.; Daefler, S.; Wong-Staal, F.; Gallo, R. C.; Klotman, M. E. J. Virol. 1993, 67, 6882. (30) Zapp, M. L.; Stern, S.; Green, M. R. Cell 1993, 74, 969. (31) Stage, T. K.; Hertel, K. J.; Uhlenbeck, O. C. RNA 1995, 1, 95. (32) Ratmeyer, L.; Zapp, M. L.; Green, M. R.; Vinayak, R.; Kumar, A.; Boykin, D. W.; Wilson, W. D. Biochemistry 1996, 35, 13689. (33) Burke, J. M.; Erzal-Herranz, A. FASEB J. 1993, 7, 106. (34) Antisense oligodeoxynucleotides and antisense RNA: NoVel pharmacological and therapeutic agents; Weiss, B., Ed.; CRC Press: Boca Raton, FL, 1997. (35) Bartel, D. P.; Szostak, J. W. Science 1993, 261, 1411. (36) Gold, L.; Polisky, B.; Uhlenbeck, O.; Yarus, M. Annu. ReV. Biochem. 1995, 64, 763. (37) Mesmaeker, A. D.; Häner, R.; Martin, P.; Moser, H. E. Acc. Chem. Res. 1995, 28, 366. (38) Sharma, H. W.; Narayanan, R. Bioessays 1995, 17, 1055. (39) Egli, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 1894. (40) Stein, C. A.; Cheng, Y.-C. Science 1993, 261, 1004. 11591 J. Am. Chem. Soc. 1997, 119, 11591-11597 S0002-7863(97)01468-6 CCC: $14.00 © 1997 American Chemical Society Organometallic complexes and small organic molecules recognize more irregular elements of structure. For example, various rhodium complexes recognize expanded RNA major grooves48,49 or G‚U mismatches,50 and the organometallic complexes methidiumpropyl-EDTA and bis(phenanthroline)copper(II) show some preference for junctions between duplexes and singlestranded loops or bulges.51,52 The aminoglycoside antibiotic neomycin B recognizes a distinct stem-loop structure within the group I ribozyme,53 the hammerhead enzyme-substrate complex,31 the Rev response element RNA,54 and, under certain conditions, 16S rRNA.55,56 Although combinatorial methods may prove extremely useful for identifying small molecule ligands for specific RNAs,57 few general strategies exist for the design of molecules capable of binding large, globular RNAs in a sequenceand structure-dependent fashion. Several years ago our laboratory presented a general strategy through which the structure and sequence of an RNA might be recognized (Figure 1).47,58-62 Our strategy is based on a class of molecules called tethered oligonucleotide probes (TOPs). A TOP consists of two short oligonucleotides joined by a tether whose length and composition may be varied using chemical synthesis. Each of the oligonucleotides within a TOP recognizes a single, accessible sequence within the target RNA, and the tether traverses the distance between the two sequences. In contrast to traditional oligonucleotides which recognize a single, contiguous RNA sequence, TOPs recognize two short, noncontiguous sequences that are proximal in the folded RNA. Because TOPs bind simultaneously to two accessible sequences, rather than one long sequence that may not be fully accessible, TOPs exhibit very high affinities for structured RNA targets and bind these targets more rapidly than molecules that must disrupt structure in order to bind.47,60 Initially, we evaluated TOPs that recognized two noncontiguous single-stranded sequences within a target RNA through the formation of standard Watson-Crick base pairs.47,58-60 More recently, we evaluated TOPs that recognized one single-stranded and one double-stranded region simultaneously through the formation of Watson-Crick and Hoogsteen base pairs, respectively.61,62 These molecules were termed triplex TOPs. The RNA target for our triplex TOPs was a modified version of the HIV-1 Rev response element (RRE) (Figure 2A) in which twelve contiguous A-U base pairs replaced a portion of stemloop IIB (RREAU, Figure 2B). The 5′-oligonucleotide within each triplex TOP recognized the accessible, single-stranded region between positions 69 and 76 of RREAU (site 1) to form a duplex and the 3′-oligonucleotide recognized the AU-rich duplex (site 4) to form a triple helix. Triplex TOPs designed to recognize RREAU sites 1 and 4 formed complexes with nanomolar dissociation constants61 and were effective inhibitors of Rev‚RREAU complexation at equilibrium in Vitro.62 Here we characterize the kinetics and mechanism of triplex TOP‚RREAU association and dissociation. Because triplex TOP‚RREAU complexes cannot be observed by direct electrophoretic methods,61 kinetics was monitored by use of a competitive electrophoretic mobility shift assay63-65 that quanti(41) Uhlenbeck, O. C. J. Mol. Biol. 1972, 65, 25. (42) Freier, S. M.; Tinoco, I. J. Biochemistry 1975, 14, 3310. (43) Freier, S. M.; Lima, W. F.; Sanghvi, Y. S.; Vickers, T.; Zounes, M.; Cook, P. D.; Ecker, D. J. RaVen Press Ser. Mol. Cell. Biol. 1992, 1, 95. (44) Rittner, K.; Burmester, C.; Sczakiel, G. Nucleic Acids Res. 1993, 21, 1381. (45) Homann, M.; Rittner, K.; Sczakiel, G. J. Mol. Biol. 1993, 233, 7. (46) Kronenwett, R.; Haas, R.; Sczakiel, G. J. Mol. Biol. 1996, 259, 632. (47) Cload, S. T.; Schepartz, A. J. Am. Chem. Soc. 1994, 116, 437. (48) Chow, C. S.; Barton, J. K. J. Am. Chem. Soc. 1990, 112, 2839. (49) Chow, C. S.; Behlen, L. S.; Uhlenbeck, O. C.; Barton, J. K. Biochemistry 1992, 31, 972. (50) Chow, C. S.; Barton, J. K. Biochemistry 1992, 31, 5423. (51) Kean, J. M.; White, S. A.; Draper, D. E. Biochemistry 1985, 24, 5062. (52) Murakawa, G. J.; Chem, C.-h., B.; Kuwabare, M. D.; Nierlich, D. P.; Sigman, D. S. Nucleic Acids Res. 1989, 17, 5361. (53) von Ahsen, U.; Noller, H. F. Science 1993, 260, 1500. (54) Werstuck, G.; Zapp, M. L.; Green, M. R. Chem. Biol. 1996, 3, 129. (55) Moazed, D.; Noller, H. F. Nature (London) 1987, 327, 389. (56) Famulok, M.; Huttenhofer, A. Biochemistry 1996, 35, 4265. (57) Park, W. K. C.; Auer, M.; Jaksche, H.; Wong, C.-H. J. Am. Chem. Soc. 1996, 118, 10150. (58) Richardson, P. L.; Schepartz, A. J. Am. Chem. Soc. 1991, 113, 5109. (59) Cload, S. T.; Schepartz, A. J. Am. Chem. Soc. 1991, 113, 6324. (60) Cload, S. T.; Richardson, P. L.; Huang, Y.-H.; Schepartz, A. J. Am. Chem. Soc. 1993, 115, 5005. (61) Moses, A.; Schepartz, A. J. Am. Chem. Soc. 1996, 118, 10896. (62) Moses, A. C.; Huang, S.; Schepartz, A. Bioorg. Med. Chem. 1997, 5, 1123. (63) Aranyi, P. Biochim. Biophys. Acta 1980, 628, 220. (64) Kim, J. G.; Takeda, Y.; Matthews, B. W.; Anderson, W. F. J. Mol. Biol. 1987, 196, 149. (65) Gerstle, J. T.; Fried, M. G. Electrophoresis 1993, 14, 725. Figure 1. Sequences of TOPs and oligonucleotides used in this study. Figure 2. Sequences of (A) wild type RRE (wtRRE) and (B) RREAU. Those residues within wtRRE that contact Rev directly85,86 are shaded, as are sites 1, 2, and 4 of RREAU. RREAU is numbered in accord with wtRRE. 11592 J. Am. Chem. Soc., Vol. 119, No. 48, 1997 Moses and Schepartz
منابع مشابه
Pii: S0968-0896(97)00048-5
-We have described a class of molecules, called tethered oligonucleotide probes (TOPs), that bind RNA on the basis of both sequence and structure. TOPs consist of two short oligonucleotides joined by a tether whose length and composition may be varied using chemical synthesis. In a triplex TOP, one oligonucleotide recognizes a short single-stranded region in a target RNA through the formation o...
متن کاملساختار مولکول DNA سه رشته ای: اهمیت و کاربردهای پزشکی آن
Back in 1957, when investigators produced a triple-stranded form of DNA while studying synthetic nucleic acids, few researchers paid much attention to the discovery. However, triplex DNA was never entirely forgotton and especially since 1987 its structural and functional importance in biological systems as well as its medical applications and therapeutic potentional have been extensively studie...
متن کاملSequence-specific control of gene expression by antigene and clamp oligonucleotides.
Control of gene expression at the transcriptional level can be achieved with triplex-forming oligonucleotides provided that the target sequence is accessible within the chromatin structure of cell nuclei. Using oligonucleotide-psoralen conjugates as probes we have shown that the promoter region of the gene encoding the alpha subunit of the interleukin 2 receptor and the polypurine tract of inte...
متن کاملMechanism of antisense oligonucleotide interaction with natural RNAs.
Oligonucleotides find several numbers of applications: as diagnostic probes, RT and PCR primers and antisense agents due to their ability of forming specific interactions with complementary nucleotide sequences within nucleic acids. These interactions are strongly affected by accessibility of the target sequence in the RNA structure. In the present work the mechanism of invasion of RNA structur...
متن کاملQuantitative hybridization kinetics of DNA probes to RNA in solution followed by diffusional fluorescence correlation analysis.
Binding kinetics in solution of six N,N,N',N'-tetramethyl-5-carboxyrhodamine-labeled oligodeoxyribonucleotide probes to a 101mer target RNA comprising the primer binding site for HIV-1 reverse transcriptase were characterized using fluorescence correlation spectroscopy (FCS). FCS allows a sensitive, non-radioactive real time observation of hybridization of probes to the RNA target in the buffer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997